Projects

Exploration of Numerical Solutions to 1D Schrodinger Equation

1D Time Dependent and Independent Schrodinger Equation Simulations in Jupyter Notebook
Numerical Methods for the Schrodinger Equation Notebook In this project, we explored numerical solutions to the 1D Schrodinger Equation. The vast majority of the content of this project is in the notebook, so I encourage you to check it out. One intresting note, is that the approach for the arbitrary potential of the Time Dependent Schrodinger equation scales to higher dimensions very cleaning by just using the higher dimensional Fourier Transform (seperate integral for each direction).

Sidewalk Following Robot

A Sidewalk Following robot using Deeplab v3 segmentation.
This project is a robot which, for extended distances, can follow and map sidewalk networks in a global, UTM coordinate frame while avoiding bikes, pedestrians and small ground vehicles. Our platform is a Clearpath Jackal, again, utilizing a Nvidia Xavier for perception, 2x Intel Realsense D435 which are frame synced and a Intel NUC for control and planning. We use Deeplab v3 with a Mobile Net backbone trained on Cityscapes for real time segmentation (25-30fps) running with 16bit floating point mode using TensorRT while doing RGB-D ORB_SLAM2 or DSO depending on the sequence for mapping and pose estimates.